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Discrete quadrature method for singular integrals on closed smooth contours. 
 
 
 
 

I. O. Isaac1

ABSTRACT 
 

In this paper, a discrete quadrature structure is worked out for the numerical solution of a singular integral of the form 

                                        ∫
Ω −

= dt
tt
ttI

0
0

)()( ψ
 

where t0 ∈ Ω, ψ(t) is smooth and belongs to the Holder’s class H(α) on Ω.  Ω is a closed smooth contour, which may be a standard circle of 

radius r or a closed Lyapunov contour.  Some numerical results are obtained for the case of a unit circle with center at the origin. 
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INTRODUCTION 
 

Most of the functions considered here will be defined on smooth 

lines and will be assumed to satisfy the Holder condition 

(Muskhelishvili, 1972). 

Throughout our discussions, only lines lying in one and the same 

plane will be considered.  Unless otherwise stated, lines are always 

assumed to be simple, i.e. not to intersect. 

Curves will be called smooth arcs, when they can be represented 

in the form: 

                      x = x(s),  y = y(s), sa < s < sb                               …  (1.1) 

where sa, sb are finite constants, x(s) and y(s) are functions continuous 

in the interval of definition, with the following properties: 

1. They have continuous first derivatives  within 

the interval (s

)(),( sysx ′′

a, sb), including the end points, and these derivat- 

ives are never simultaneously zero:  at the ends 

of the interval are to be interpreted as 

)(),( sysx ′′

)0(),0( +′+′ aa sysx  

and  )0(),0( −′−′ bb sysx  respectively. 

2. The relation x(s1) ≠ x(s2) or y(s1) ≠ y(s1) holds for sa < s1, 

s2 < sb, s1 ≠ s2. 

Curves will be termed smooth contours, if they differ from 

smooth arcs only in that, in condition 2, the equalities hold iff s1 = s2; 

what is more, x(sb) = x(sa),  y(sb) = y(sa) and 

 ),0()0( +′=−′ ab sxsx ).0()0( +′=−′ ab sysy         

The function ψ(t) will be said to satisfy a Holder condition on Ω,  

if for any t1, t2 ∈ Ω  

            ( ) ( ) ,1212
αψψ ttAtt −=−                 …  (1.2) 

where A and α are positive constants (Muskhelishvili, 1972).  A is 

called the Holder constant and α the Holder index.  Here, t denotes 

both the point t(x, y) and the corresponding complex number  

t = x + iy. 

A function which satisfies a Holder condition will be said to 

obey the H condition or, when it is necessary to specify the index α, 

the H(α) condition.  The value of the constant A is generally of no 

interest. 

An arc is called Lyapunov (Shaposhnikova et al, 1975), if it has 

a well-defined tangent at every point and the angle θ between the 

tangents at the point t1 and t2 of this arc satisfies the inequality. 

                        
αθ 21 ttA −≤                             …  (1.3) 

where A and α are the same as in (1.2) above. 
 

DISCRETE QUADRATURE METHOD FOR A SINGULAR 

INTEGRAL ∫
Ω − 0tt

dt
 

 

In this paper, we consider the discrete quadrature formula for a 

singular integral 

   ∫
Ω −

=
o

o tt
dtttI )()( ψ

                            …  (2.1) 

where Ω is a unit circle with center at the origin, t0 is an arbitrary 

point in Ω and ψ(t) is a smooth function which belongs to the Holder 

class H(α) on Ω. 
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It makes sense to begin with the integral 

  ∫
Ω −

=
0

00 )(
tt

dttI                                   …   (2.2) 

where the value is already known (Muskhelishvili, 1972) and  

expressed as                          ( ) .00 itI π=                    …  (2.3) 

We choose on Ω, two sets of nodal points E = {tk, k = n,1 } and 

Eo = {tok, k = n,1 } such that the points tk, k = n,1  divide the circle, 

Ω, into n different parts, while the points t0k are chosen to be the mid-

points of the arc tktk-1.  Notice that in this context, we have assumed 

tn+1 = t1.  In future, we shall refer to these sets E and Eo as the 

canonical subdivision of the circle Ω. 
 

Lemma 1 

For any point t0j ∈ E0, the following inequality is satisfied: 

                   ⎟
⎠
⎞

⎜
⎝
⎛≤

−
Δ

−
−∫ ∑

Ω = ntt
t

tt
dt n

k jk

k 10
1 00

                  …   

(2.4) 

where Δtk = tk+1 – tk, k = k = n,1 .  The symbol ⎟
⎠
⎞

⎜
⎝
⎛

n
10 is used to 

represent quantities having the same order of singularity 
n
1 , so that in 

the above inequality, the right-hand side can be thought of as a 

quantity 
n
B , where B is independent of n. 

Since Ω is a unit circle and centred at the origin, we may write 

(Gandel, 1983; Noreddin and Tekhonenko, 1991) 

                        ,, 0
0

kk i
k

i
k etet θθ ==

where θk and θ0k are the polar angles of tk and t0k respectively,  

k = n,1 .  Denoting      nm
nn

m
m ...,,1,2

=−=
ππη  

and considering the periodic nature of eiθ, we  write 

               ∑∑
== −

−
−=

−
Δ +n

m
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k jk

k
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e
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−
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2
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2

cot
2

cos mmmmi ηηηη Δ
⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ ΔΔ

+
Δ

+    …  (2.5) 

where  Δηm = ηm + 1 - ηm = ....,,1,
2

nmm =
η

 

Notice that since the numbers ,
2

mη
 m = 1, …, n are 

symmetrically distributed about the 
2
π

 line, the equality 

                                   0
2

cot
1

=∑
=

m
n

m

η
                             …  (2.6) 

is valid. 

From equations (2.5) and (2.6), it follows that  

     ∑
=

⎟
⎠
⎞

⎜
⎝
⎛+=+−=

−
Δn

m jk

k

n
i

n
nin

tt
t

1

2

0

102sin
22

sin πππ
     …  (2.7) 

Thus, together with equation (2.3), the validity of relation (2.4) is 

proved. 
 

Remark 1 

The following estimate is valid: 

        ∑
=

=≤
−

Δn

k kj

k njnO
tt

t

1 0

...,,1),(ln
||

           …   (2.8) 

Indeed, it is observed that 

[ ]
)(ln2

2
2

sin

2
sin 1

11 10

2

nOC
tt

t
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m
n

k

n

m m

m

jk
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n

=⋅
Δ

≤

Δ

=
−
Δ ∑∑ ∑

+

== = η
η

η

η
   …  (2.9) 

where [x] is the whole part of the number x. 
 

THE METHOD 
 

Let us now attempt to put together a similar quadrature structure 

for the singular integral in (2.1) (Hermann, 1990; Bialecki et al, 

2004).  We shall, in this context, still consider the sets E and Eo as the 

canonical subdivision of the circle Ω.  Let  

      ∑
=

=
−
Δ

=
n

k jk

kk
jn nj

tt
tt

tS
1 0

0 ....,,1,
)(

)(
ψ

         …  

(3.1) 

The following theorem is valid. 
 

Theorem 1 

Let ψ(t) obey the H(α) condition on Ω.  Then the following 

inequality is satisfied: 

      ( ) ( ) ( ) njttStI jjnj ...,,1,000 =≤− θ      …  

(3.2) 

where  ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

n
Otn

n
Ot jj

1ln1
00 ψθ α

. 

 

Proof: 

For convenience, we shall take toj = 1.  In this case, 

             ( ) ( ) 2100 IItStI jnj +≤− . 

( ) .
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1,
1

)1()(
1

)1()(
1

2
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t
t

t
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t
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t
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Relation (2.4) immediately provides the estimate for .  For 

expression , we further rearrange as follows: 
2I

1I
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                          1111 IIII ′′′+′′+′≤
where      

( ) ( ) ( ) ( ) ( ) ( ) ,
1

1,
1

1
1

1 11
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1

1
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−
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t
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and 

         
( ) ( )

.2
1

1
1 nt

t
I

n

n πψψ
−
−

=′′′  

Since ψ(t) belongs to Holder’s class in Ω, 

( ) ( )
.1

1
1 11

1
1 dttAdt

t
t

I
t

t

t

t nn

∫∫
+−−≤

−

−
≤′′ αψψ

                       

For a unit circle, |dt| = dθ and 

       ( ) .
2

sin2sin1cos11 θθθθ =+−=−=− iet i  

Therefore,  

      .1
2
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0

1
1

0

1

1 ∫∫ ⎟
⎠
⎞

⎜
⎝
⎛=≤⎟

⎠
⎞

⎜
⎝
⎛≤′′ +−

+− nn

n
OdCdAI

ππ

α
α

α
α θθθθ  

For  we have ,1I ′′′

   .112 1
1 ⎟

⎠
⎞

⎜
⎝
⎛=−≤′′′ +−

α

απ
n

OtA
n

I n  

However, the estimate for  will undergo some kind of further 

simplification with the understanding that we shall require its services 

in future.  Indeed, 

1I ′
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j

j
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−
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−
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−
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Consequently,
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Since ψ(t) belongs to Holder’s class in Ω and t = eiθ, we have 

θ
θπ

α

π

π

α
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n
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C
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Finally, for the second sum, we have 

⎟
⎠
⎞

⎜
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−
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−

+
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π
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These last expressions for S1 and S2 provide the estimate for .1I ′   

Thus, together with  and  it is clear that  1I ′′ ,1I ′′′
                          ( ).ln1 nnOI α−≤  

This proves theorem 1. 
 

Definition 

A function ϕ(t) is said to belong to the class ∏ on Ω if 

it can be expressed in the form 

                          ( ) ( )
tq

tt
−

=
ψ

ϕ  

where  ψ(t) ∈ H(α) on Ω and q is some fixed point on Ω. 

Notice that we can write     

          
( ) ( ) ( ) .1

000
⎥
⎦

⎤
⎢
⎣

⎡

−
−

−−
=

− ∫ ∫∫
Ω ΩΩ

dt
qt
tdt

tt
t

tq
dt

tt
t ψψϕ

 

This form of representation of the original singular integral guarantees 

the validity of the following theorem. 
 

Theorem 2 

Let ϕ(t) ∈ ∏ on the circle Ω, and let E and Eo be the canonical 

subdivision of Ω, what is more, let q ∈ Eo for j = jq.  Then the 

inequality 

    ( ) ( ) ( ) njjjttStI qjjnj ...,,1,,000 =≠≤− θ     …  (3.4) 

is valid, where θ(t0j) has the form 

              ( ) .,ln11

0
0 q

j
j jjn

n
O

qt
t ≠⎟

⎠
⎞

⎜
⎝
⎛

−
=

α
θ  

Clearly, θ(t0j) satisfies the relations 

                ( ) 0,1
10

1
>⎟

⎠
⎞

⎜
⎝
⎛≤ λθ

λn
Ot lj

                          …  (3.5)  

for all t0j ∈ Ω\l, where l is an ε - neighbourhood of q; ε being a very 

small pre-assigned positive number, and 

               ( ) .0,1
20

1
0

2
>⎟

⎠
⎞

⎜
⎝
⎛≤Δ∑

≠
=

λθ
λn

Ott j

n

jj
j

j

q

       …  (3.6) 

Notice that (3.5) can be written as ( )nnOl lnα−  and (3.6) in the form 

of ( )nnO lnα− . 
 

Remark 2 

Relation (3.2) still remains valid for the integral ∫Ω −
dt

tt
tt

0

0 ),(ϕ
  

if ϕ(t,t0) ∈ H(α) in Ω,  that is,  

         ⎟
⎠
⎞

⎜
⎝
⎛≤

−
−

−∫ ∑Ω
=

α

ϕϕ
n

nO
tt
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dt
tt
tt n

k jk
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j

j ln),(),(

1 0

0

0

0          …  (3.7) 

 

Remark 3 

Now, let Ω1 be a closed Lyapunov contour.  Then between the 

points τ of this curve and the points t of a standard circle L (in 

particular, a unit circle with center at the origin), there exists a one-to-

one correspondence τ = τ (t) such that ( )
dt
dt ττ =′ belongs to H(α) 

and does not vanish anywhere on Ω.  Now if ϕ(τ) ∈ H(α) on Ω1, then 
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by virtue of the formula for change of variable in singular integral 

(Muskhelishvili, 1972), we obtain 

 

Eom = {τok, k = nm-1+1, …, nm} be the canonical subdivision of Ωm, m 

= 1, …, p into Nm = nm – nm – 1, where we have assumed that n0 = 0.  

Let mpm
NN

...,,1
min
=

= .  In future, we shall assume that 

.∞+<≤ RNN m  Again, let 

( ))()(
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),(,),()(
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=
−

=
− ∫∫ ΩΩ

. 

We call the set of points τ k = τ (tk) (tk ∈ E) and τok = τ(tok) (tok 

∈ Eo) the canonical subdivision of the contour Ω1.  Let us  consider 

the sum                                       ( ) ( )
∑
=

=
−
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where Δτk =  τk + 1 - τk, k = 1, …, np, k ≠ n1, …, np and  

....,,1,1 pm
mmm nnn =−=Δ + τττ  The following theorem 

holds: 

Since, 

( ),~),~(
)()(

1
1

1
+

+

+ ∈′=
−
−

=
Δ
Δ

kkkk
kk

kk

k

k ttarctt
tt

tt
t

τ
τττ

 
Theorem 3 

Let ϕ(τ) ∈ H(λ) on Ω.  Then for any  the 

inequality 

,
1

00 U
p

m
mj E

=

∈τand  ( )tτ ′  ∈ H(β) on Ω, then 
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⎜
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 that is, 
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APPENDIX Consequently, 
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In this section, we consider the numerical integration of the 

singular integral 

                    dt
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ttI a ∫
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where Ω is a unit circle centred at the origin and defined in the 

complex plane ; t and tC 0 being points of the circle Ω.  The 

numerical results, based on equal partitioning of Ω, was written in 

Java and is as shown in the table below. 

              .21
jj SS +=

Using (2.8), it is immediately clear that 

         ( ).ln2 nnOS j
β−≤  
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Now let Ω represent the union of p non-intersecting closed Lyapunov 

curves Ω1, …, Ωp and let the sets Em = {τk, k = nm-1+1, …, nm} and let  

Table 1. Numerical results, based on equal partitioning of Ω 
 

i  0 1 2 3 4 

it  1.00+0.00i 0.00+0.16i 0.95+0.31i 0.89+0.45i 0.81+0.59i 

( )jtS 040  -0.06-0.07i -0.13- 0.17i -0.21- 0.29i -0.29- 0.45i -0.36- 0.62i 

 

i  5 6 7 8 9 

it  0.71+0.71i 0.59+0.81i 0.45+0.89i 0.31+0.95i 0.16+0.99i 
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( )jtS 040  -0.42-0.81i -0.42- 1.01i -0.50- 1.23i -0.52- 1.45i -0.52- 1.67i 

 

 

 

     

Table 1 continued. Numerical results, based on equal partitioning of Ω 
i  15 16 17 18 19 

it  -0.71+0.71i -0.81+0.59i -0.89+0.45i -0.95+0.31i -0.99+0.16i 

( )jtS 040  -0.21- 2.83i -0.13- 2.95i -0.06- 3.05i 0.00- 3.12i 0.00- 3.12i 

 

i  20 21 22 23 24 

it  -1.00+0.00i -0.99-0.16i -0.95-0.31i -0.89-0.45i -0.81-0.59i 

( )jtS 040  -0.06- 

3.19i 

-0.13- 3.29i -0.21- 3.42i -0.29- 3.57i -0.36- 3.74i 

 

i  25 26 27 28 29 

it  -0.71-0.71i -0.59-0.81i -0.45-0.89i -0.31-0.95i -0.16-0.99i 

( )jtS 040  -0.42-3.93i -0.47- 4.14i -0.50- 4.35i -0.52- 4.57i -0.52- 4.79i 

 

i  30 31 32 33 34 

it  0.00-1.00i 0.16-0.99i 0.31-0.95i 0.45-0.89i 0.59-0.81i 

( )jtS 040  -0.50-5.01i -0.47-5.23i -0.42-5.43i -0.36-5.62i -0.29-5.80i 

 

i  35 36 37 38 39 

it  0.71-0.71i 0.81-0.59i 0.89-0.45i 0.95-0.31i 0.99-0.16i 

( )jtS 040  -0.21-5.95i -0.13-6.08i -0.06-6.18i 0.00- 6.24i 0.00- 6.24i 
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